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Association in a Lennard-Jones fluid from a second-order Percus-Yevick equation
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A model for the formation of diatomic molecules from the association of spherically symmetric atoms
is reported. The model incorporates a flexible intracore chemical bond mimicked by Gaussian potential
and Lennard-Jones interatomic interactions. To calculate the correlation functions necessary to describe
the chemical equilibrium and phase diagrams, the second-order Percus-Yevick approximation is applied.
Some structural properties of the model are discussed in terms of binary and triplet distribution func-

tions.
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Associated fluids are a very important class of real
molecular fluids (weak electrolytes, hydrogen bonded and
chemically reacting fluids, colloidal and polymeric sus-
pensions, etc.) the theoretical understanding of which is
still in its relative infancy. Strong short-ranged attraction
and the directionality of the associative interactions to-
gether with long-ranged electrostatic, dispersion, induc-
tion forces cause peculiarities in the structure of such sys-
tems which are connected to the formation of molecules,
clusters, relatively long-lived polymeric complexes, and
their thermodynamic stability. The temperature depen-
dence of the associative interactions often leads to the
anomalous behavior of the thermodynamic properties (an
extreme example is water [1]) and phase diagram (Bjerum
association and classical criticality in ionic fluids [2]).
Such phenomena are of interest both in basic science and
in industrial applications.

There are two aspects to the problem of an associated
fluid. First, a reasonable model must be constructed and
then its properties must be determined and studied. Re-
cently, a number of simple models of the associating
fluids have been proposed (see Ref. [3] for a review). In
this Brief Report, we will restrict our attention to the
class of chemically reacting fluid (CRF) models in which,
according to the classification by Kalyuzhnyi et al. [3],
there is interpenetration of the repulsive cores of associat-
ing particles upon association. To date only primitive
models of this class have been considered. Examples are
the shielded sticky point model of Stell and Zhou [4] and
shielded attractive shell and shielded sticky shell models
of Cummings and Stell [S] which employ &-function
Mayer functions to describe the associative interactions.
The 8 functions are introduced so that one may obtain
analytical solutions within the Percus-Yevick (PY) ap-
proximation [4,5]. However, more sophisticated approxi-
mations require numerical work, as do simulations. In
numerical studies, 6 functions are not only unnecessary
but inconvenient. The use of a 8 function has a further
deficiency if one is interested in the properties of CRF
beyond structure. The formed molecules are rigid and
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due to this intramolecular vibrations are ignored. In
some earlier numerical studies, a deep and narrow well,
instead of a § function, has been used [3,6].

In this Brief Report we introduce a more realistic mod-
el for the chemical bonding and obtain the properties of
this model using a highly sophisticated approach. We
use the Lennard-Jones (LJ) interaction to describe the
long-range forces. By having a temperature dependence
in the exponential of the basic interaction, we allow for
interesting phase behavior (especially in mixtures) and
the possibility of the description of real systems. The
chemical bonding is provided by the presence of an at-
tractive Gaussian potential inside the LJ core. It is con-
venient to give our potential in terms of the exponential
of the pair potential, u (),

e(r)=exp[ —Bu(r)]
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where € and o are the LJ parameters, B=1/kT, the pa-
rameter €, gives the strength of the bond energy and L is
the intermolecular distance at which the maximum bind-
ing energy is attained. The distance at which the energy
tends to zero as the value |r —L| increases is determined
by parameter s, which, in principle, can be estimated
from quantum mechanical calculations for a pair of given
molecules. We assume that the potential, (1), applies to
all pairs of molecules. Thus, we are considering a reac-
tion of the type 4 + A—A,. The width of the Gaussian
permits an increased formation of trimers and higher or-
der n-mers compared to &-function interactions [4,5].
Gaussian potentials have been considered by Ben-Naim
[1] to model hydrogen bonding in water.

The analytical description of CRFs is usually based on
the PY and hypernetted chain (HNC) approximations
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which simplify the contribution arising from the bridge
function, B (r), which is the sum of an infinite number of
so-called nondecomposible or bridge diagrams [7]. It is
ignored in the HNC approximation and written in terms
of decomposible diagrams in the PY approximation.
This leads to errors in describing the intra- and inter-
molecular correlations in associated fluids [8] and, as
consequence, these approximations fail in the description
of chemical equilibrium [5,9]. In this note we wish to go
beyond these usual approximations and use an expression
for B (r), which includes an infinite sum of a class of non-
decomposible diagrams. A method for doing this is pro-
vided by the second-order Percus-Yevick (PY2) approxi-
mation introduced by Attard [10].

We start from a generalization of the Ornstein-Zernike
(OZ) equation to the case of a nonuniform fluid

h,(r;,r,)=c,(r,1;)
+ fp,,(r3)h,,(rl,r3)c,,(r2,r3)dr3 , (2)

where h,(r;,r;) and c,(r;,r,) are the nonuniform total
and direct correlation functions and p,(r)=p,(7) is the
nonuniform local density. Equation (2) can be also ap-
plied to the case when the inhomogeneity is due to one of
the fluid molecules. In this case p,(r)
=pg(r)=py(r)e(r); p is the average fluid density, g (r) is
the usual radial distribution function, and y (7) is the cav-
ity function. The functions y (#) and ¢, (r) are connected
by the following exact relation [11]:

Vy(1'1)=pfc,,(rl,rz)Vlg'(rz)dr2 . (3)

To solve the set (2) and (3) one must specify the closure
relation between the functions c,(r;,r,) and h,(r,,r,).
We assume the PY  closure, i.e., c,(r,r,)
=[h,(r;,r)+1][1+e(|r;—r1,|)]. The bridge function
for the uniform system then may be calculated from
B(r)=Iny(r)—y(r)+1. The uniform fluid direct correla-
tion function, ¢(r), is defined by the OZ equation:

y(rp)=1+p [ [g(r;3)—1lc(ry)dr; . @)
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FIG. 1. The functions g(r). The solid and dotted lines are
the result of the PY2 and PY approximations, respectively, eval-
uated at p=0.75. The dashed line is the results of the PY2
theory at p=0.3. The left panel shows intermolecular parts of
g(r).
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FIG. 2. The functions c(r) and B (r) evaluated from the PY2
approximation at p=0.75 (solid lines) and at p=0.3 (dashed
lines).

Having specified the interaction potentials, we can deter-
mine the functions g (r), y (), ¢ (r), and B (r) by using the
Attard’s numerical method [10]. In this Brief Report we
use L =0.45, s =0.04, and ﬁsg =0.12. This corresponds
roughly to a value 7=0.02 in the primitive model of a
CRF [4,5]. The LJ parameters which we used are
Be=0.5 and o =1. The value of o is not a restriction. It
is merely a specification of the distance scale. We have
considered several densities, up to p=0.75.

The results of the PY2 and PY approximations for the
radial distribution function, g (r), are given in Fig. 1 The
PY2 and PY results are similar for » > 1 with PY2 peaks
being slightly more pronounced. The PY2 intramolecu-
lar peak is greater than for the PY. In addition, the peak
is shifted slightly. The differences in the PY2 and PY in-
tramolecular peaks correspond to different numbers of
chemically bonded particles. We also calculated y (7) but
do not display results for economy of space. Figure 2
shows some values for the direct correlation function and
the bridge function calculated from the PY2 approxima-
tion. Both show a significant peak at r =0.45. Finally, in
Fig. 3 we show a three-dimensional plot of the triplet dis-

g3(0,r1ar2)

FIG. 3. The triplet function g;(0,r,7,), calculated for the
angle between r; and r, equal to 45° at p=0.75.
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tribution function, g4(0,r,,1r,)=g,(r,1r,)g(r;)g(r;). To
conserve space, we show results only for p=0.75 and for
the case where the angle between r; and r, is 45°. The
small peak near the origin results from the formation of
trimers. The peaks along the lines »; =0.45 and r, =0.45
reflect the presence of dimers.

In this Brief Report, we have formulated a model ap-
propriate for an associating or chemically reacting fluid.
This model is based on the LJ fluid and may be expected
to exhibit interesting phase behavior, especially if the LY
fluid is a mixture. The use of a Gaussian potential to de-
scribe the bond means that the bond is flexible. This is
more realistic than previous models which have a rigid
bond. In addition, we have made some calculations of
the correlation functions, including the bridge function
and the triplet distribution function, of this fluid using a
relatively sophisticated PY2 approximation. The evalua-
tion of the triplet distribution function allows for the

BRIEF REPORTS 52

identification of trimers. This calculation is very
demanding and very few systems have been considered.
However, the studies of simple fluids indicate [10] that
the PY2 approximation is much better than the usual PY
approximation. We have every reason to expect that this
will be true for the associating fluids considered here. The
approach presented here can be also extended to the case
of multicomponent systems in which the chemical associ-
ation is allowed between all or some selected species. Ob-
viously, the approach is not limited to the case of a LJ
long-range potential but an be applied to different models
of long-range forces. We will address all these problems
to our further work.
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